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Based on well-known results from the kinetic theory of gases, we give approximate formulas relating
the separation ratio of gas mixtures to the diffusion coefficient, the concentration, and the temperature
for the case of a dilute mixture of a light, monoatomic component in a much heavier one (Lorentz gas
mixture). Beyond that, we calculate the Dufour number for this case and give an explicit relation which
shows that the separation ratio and the Dufour number are inversely proportional. The knowledge of
the separation ratio and the Dufour number is important for the study of convection in gas mixtures.
We apply the results by providing a modified set of advection-diffusion equations appropriate to Lorentz

gas mixtures.

PACS number(s): 51.30.+i, 47.20.—k

I. INTRODUCTION

Most of the studies of convection in binary fluid mix-
tures have focused on liquid mixtures. During the last
decade, a considerably deep understanding of their prop-
erties has been achieved (for a recent overview, see Ref.
[1]). Convection in gas mixtures [1], however, is less well
understood. In gas mixtures, the time scales for thermal
and mass diffusion are of the same order and are not dis-
tinct by a factor of about 100 as in liquid mixtures. Re-
cently, theoretical work [2-4] on convection in gas mix-
tures has shown that their instabilities to convection can
be quite different from that of liquid mixtures, provided
that the Dufour effect is large and the separation ratio
(which is related to the thermodiffusion effect) is not too
close to zero [2,3]. There are many open questions, if one
is interested in experimental investigations in this system.
To perform experiments in the Rayleigh-Bénard setup,
one is confronted with the problem that one needs infor-
mation about several thermodynamic and transport prop-
erties of the binary mixture. In particular, the separation
ratio ¥ and the Dufour number Q are important. Beside
the Rayleigh number, they are two further control pa-
rameters which appear in the nondimensional fluid dy-
namic equations. Knowledge of them is important for
reaching ranges of control parameters where one can see
the new interesting features [2—4]. For an arbitrary gas
mixture, it seems to be impossible to estimate theoretical-
ly the separation ratio based on easier measurable quanti-
ties. In this Brief Report, we provide several approxima-
tive relations for the separation ratio and the Dufour
number for a special class of gas mixtures, the diffusion of
a dilute mixture of a light, monoatomic component in a
heavy component. As an application, we also provide the
set of advection-diffusion equations which serve as an ap-
propriate starting point to study convection in Lorentz
gases. We take advantage of well-known analytic results
from the kinetic theory of gases [6,7] and simple ideal gas
mixture approximations to gain more insight into the
physics behind the separation ratio and the Dufour num-
ber.
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II. SEPARATION RATIO FOR LORENTZ
GAS MIXTURES

The separation ratio [1] is given by

__Bkr
Y a T (1)
Here, B=—(1/C)3p/3C)r, and a=—(1/T)3p/
dT)c,, are the solutal and thermal expansion coefficients;
p is the total mass density, i.e., the sum of the mass densi-
ties of the two components, p=p;+p,. The concentra-
tion C is defined by the ratio of the mass density p; of the
lighter component and the total mass density p, C=p,/p.
T denotes the temperature, p the pressure, and k; the
thermodiffusion coefficient of the mixture. kr [5], a
transport coefficient, is basically the coupling coefficient
of the heat flux in the equation for the mass flux of one
component (“Soret effect”) and thus a quantity being
determined as a combination of Onsager coefficients. It
cannot be calculated easily, and exact theories based on
Boltzmann’s equation [7] are not very practical, since
there are several microscopic, usually unknown parame-
ters involved.
First, one can approximate a by its ideal gas value
T !, which implies = — Bk, provided there are normal
temperature and pressure conditions. Second, we recall
that the solutal expansion coefficient 3 is positive as a re-
sult of thermodynamic considerations [6]. Using an ideal
gas mixture approximation (see, e.g., Refs. [2,3]), one can
calculate B explicitly, yielding

1—-m,

B==cm.+c"

(2)

where m,=m,/m, is the ratio of particle masses m,
and m, of the two components. From Eq. (2) one can see
that large B can be reached for small particle mass ratios
m, <<1 and dilute mixtures C <<1. This is intuitively
clear, since [ basically measures the density changes due
to the replacing of a particle of one component by one of
the other. This is large when the differences of the parti-
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cle masses are large. The kinetic theory of gases, cf. Ref.
[7], gives in the limit of a mixture of a dilute, light,
monoatomic component in a much heavier component,
which is called a Lorentz gas mixture, the following rela-
tions [7] for the diffusion coefficient D and the
thermodiffusion ratio k;:

D : 3
3pm*(1—C)2<U/Ur> (3)
(v/o,)

Here, o, denotes the collision cross section, v the velocity
of the lighter particles, and the brackets denote averaging
over a Maxwellian velocity distribution [7].

In this special case, one considers the heavy particles
as almost fixed in space, and only collisions of the lighter
with the heavier particles are taken into account. Let us
note the range of validity of these formulas: (i) The parti-
cle mass of the dilute component m,; has to be much
smaller than m,; (ii) the mixture has to be dilute in the
sense that m ,(1—C) is large in comparison to C; and (iii)
gradients of temperature and concentration act only in
one space dimension.

Eliminating (v /o,) from Egs. (3) and (4) and using
Eq. (2) yield

1—m

*
Y m*(l—C)C[TaTlnD(T) 2]. (5)
This simple relation basically connects the separation ra-
tio ¥ with the diffusion coefficient D, which is experimen-
tally easier to measure.

Several conclusions can be drawn from Eq. (5). (i) To
calculate 1, it is not necessary to know the value of the
diffusion coefficient exactly; the logarithmic variation of
the diffusion coefficient with temperature is sufficient. (ii)
The separation ratio of a gas mixture is zero, if
dD/D=2dT/T or, equivalently, if the diffusion
coefficient D has a quadratic dependence on the tempera-
ture, D (T)=const X T2, Thus, mixtures having tempera-
ture dependence with an exponent close to 2 are not good
candidates for reaching larger separation ratios. (iii)
Since m, <<1 and C is positive, 1 is positive (negative) if
the variation of D (T) with T at temperature T is weaker
(stronger) than quadratic. (iv) In the limit of vanishing
concentration C—0 the separation ratio ¥ approaches
zero linearly, since neither 8 nor the diffusion coefficient
D behave anomalously in this limit.

Also, the diffusion coefficient D in gases is not a quanti-
ty which can be easily calculated. However, there is the
empirical, power-law relationship [8] D=D(T)
=Dy(T /T,)", which is valid for a wide range of gas mix-
tures under normal pressure and temperature conditions.
Here, T, is a reference temperature and the exponent n
can be determined experimentally and is tabulated for
some mixtures [8]. Unfortunately, only few are known
even of this quantity. The few, tabulated values [8] of n
range from 7 to 2, suggesting that only positive ¥ might
be realistic, albeit that this does not exclude n > 2 at all.
Using the power-law behavior, one obtains

L PR Vo
1l}—m,,,(l—C) = m,

(2—n)C, (6)

a linear dependence of ¥ on the concentration C. Since
C/m, has to be small in Lorentz gas mixtures, one can-
not expect to reach large moduli of ¥ in this limit.

III. THE DUFOUR NUMBER
OF A LORENTZ GAS MIXTURE

The Dufour number, a purely thermodynamic quanti-
ty, is part of the second cross-coupling coefficient (cou-
pling of the mass flux of the lighter component to the
heat flux) which determines the magnitude of the Dufour
effect [5]. Itis given by [2]

Ta?
c,B

Using the ideal gas result for Q from Ref. [3], approxi-
mating the specific heat ¢, of the mixture by a linear in-
terpolation of the specific heat of the single components
Cp,is .cp(C.)'=cp,2+(cp,l—cp’z)C, and u_sing the same ap-
proximations we made before, we obtain

9

3C (N

Qo=

T,p

k m, k m
0=—7"> L2 )
myc,(C) (1=m,) C  myec,, (1—=m,) C

Thus, Q diverges proportionally to 1/C as C—0 and can
reach arbitrarily large values.

In the case of Lorentz gas mixture, the separation ratio
¥~ C and the Dufour number Q ~C ~! are not indepen-
dently variable quantities in an experiment. They are
connected by

kB kB
—2 __[T3,;InD(T)—2]~
m,m,c,

(2—n) .
mym,c,,

QY=

9)

Thus, the product Q9 does not depend on the concentra-
tion and the Dufour number Q is inversely proportional
to the separation ratio ¥ in a Lorentz gas mixture. This
also supports earlier speculations [4] about their relation-
ship, albeit in [4], where a CO,/H, mixture had been dis-
cussed.

IV. ADVECTION-DIFFUSION EQUATIONS
FOR LORENTZ GAS MIXTURES

Let us now turn to the implications of Egs. (6), (8), and
(9) for convecting binary mixtures. The most common
setup for convection experiments is the Rayleigh-Bénard
experiment, a horizontal layer of a binary fluid subject to
a constant temperature difference AT between imperme-
able horizontal boundaries at z=0 and d. Initially, if
AT =0, the concentration is constant everywhere in the
layer, as given by C(x,z)=C. When AT is increased,
only the mean concentration f dx f (1)dz C(z) is equal to C
since the boundaries are impermeable. It appears quite
natural to consider the mean concentration as a second
control parameter (instead of the separation ratio ¢). Us-
ing Egs. (6) and (8), we can eliminate 1 and Q in favor of
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the concentration C in the standard governing equations
for gas mixtures [2—4,9]. It is important, however, that
one take into account the full spatiotemporal dependence
of C in Egs. (6) and (8) since the mean concentration is
small and therefore relative variations can be quite large
(similar to calculations in Ref. [10]). Finally, one can per-
form an Overbeck-Boussinesq approximation [2-4,9],
particularly by considering all thermodynamic and hy-
drodynamic coefficients in the advection-diffusion equa-
tions as being constant. The result is the following set of
advection-diffusion equations for the velocity field u, the
concentration field C, and temperature field T, appropri-
ate as a starting point to discuss Lorentz gas mixtures:

(9, +u-V)u=—V(p+gz)
+e,0[T—T(z=1)+C—C(z=1)]

+oV%, (10a)
(8,+u-V)T=—V-J,+abC~'V-(CJ,), (10b)
(3, +u-V)C=—-V-J_, (10c)
V-u=0. (10d)

The diffusive heat and concentration fluxes J, and J_ are
given by

J,=—VT, J,=—L(VC—aCVT), (10e)

and the dimensionless coefficients a and b are given by

kv(l—m,)
a=———>7F02—n), b
Bgd3m,,

kvkgm,

B Bgd’myc,,(1—m,) '
(100)

Here, « is the thermal diffusivity, v the kinematic viscosi-
ty, o0 =v/k the Prandtl number, L =D /k the Lewis num-
ber, g the gravity acceleration, and §=gd*/«%. In writ-
ing Eqgs. (10a)-(10f) we scaled lengths by layer thickness
d, times by d?/k, temperatures by kv/agd?, concentra-
tions by «v/Bgd>, and the reduced pressure p by «*/d>.
Equations (10) must be solved with appropriate boundary
conditions, in particular no vertical mass flux at z=0 and
1, constant mean concentration 6, and fixed temperature
T(z=1)=T, and T(z=0)=T,+R. Here R is the Ray-
leigh number (the nondimensionalized temperature
difference between the boundaries).

Two remarks are in order. (i) For a chosen mixture,
the coefficients entering in @ and b can be considered as
constants, since S~1/m,. The only two experimentally
variable parameters are the Rayleigh number and mean
concentration. (ii) A reasonable further approximation is
to neglect all terms in Egs. (10), which are quadratic in
gradients of concentration and/or temperature. Then,
the cross-coupling coefficient belonging to V2C in Egq.
(10b) is a constant.

V. CONDUCTIVE STATE

The conductive state, u=0, T and C independent of
time, can be easily found by solving the equation for the
conductive mass flux 9,C—99,T=09,C—aCR =0 with
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FIG. 1. Vertical concentration stratification C(z)/C, Eq.
(11), of a Lorentz gas mixture in the conductive state for two
different values of the layer thickness, (a) d=0.2 cm,
(B) d=0.1 cm. The Rayleigh number is R =1708, the value of
the convective instability of a pure fluid.

the constraint that C= f (I)C (z)dz is constant. The result
is

_=a Re—aRz
C(Z)—C—Te_:;R—

(11)

Depending on the magnitude of a, the conductive con-
centration C(z) can vary in a strongly nonlinear way.
Only if aR approaches zero will C(z) be linear. Note
that the parameter g, given in Eq. (10f), scales as d 3 and
thus can be varied over several decades by varying the
layer height. For gas mixtures, k=0.1 cm?/sec and
v=0.1 cm?/sec are quite typical [2,3]. Using these
values, Eq. (2), n=1.75, one obtains a ~2.5X 10764 73
cm®. In Fig. 1 we show for this set of parameters,
R =1708, and two different layer heights, d =0.2 and 0.1
cm, the vertical conductive concentration stratification
C(z)/C. Already, for d=0.1 cm, one can see a boundary
layer of higher concentration close to the lower bound-
ary. This effect becomes even more pronounced for a lay-
er thickness d =0.05 cm, as used in recent convection ex-
periments in one-component gases [12]. Equation (11)
can also serve as a check of the relations provided in this
paper, if the conductive concentration distribution is
measured experimentally, as was done by Kolodner, Wil-
liams, and Moe [11] for liquid mixtures.

V1. SUMMARY

We have given several simple, approximate relations
for the separation ratio ¥, which can serve as a guide to
estimate ¢ in a Lorentz gas mixture. We have also given
a relation for the Dufour number Q of a Lorentz gas mix-
ture and shown that the product Qv does not depend on
the concentration if C <<1. So far, the relations we pro-
vide are based on a linear diffusion process and, strictly
speaking, are only applicable to conductive problems. In
the case of convection, one should expect some deviations
since the concentration and temperature gradients are
not unidirectional. Nevertheless, Egs. (10), provided in
this paper, can be considered as a starting point to dis-
cuss convection in gas mixtures using only the Rayleigh
number and the mean concentration as control parame-
ter.
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